Petrozavodsk State University Institute of Mathematics and Information Technology

An Algorithm for Building an Enterprise Network Topology Using Widespread Data Sources

Anton Andreev, Iurii A. Bogoiavlenskii

FRUCT21 November 6-10 , 2017, Helsinki, Finland

Network topology graph

The field of automated network topology discovery has taken on greater importance as networks become more dynamic and complex in nature.

A lot of network management tasks depend on the network description, which is very convenient to be represented as graph containing connections between network elements and their groups:

- network devices, their ports;
- various logical groups of devices and ports:
 - ▶ broadcast domains (VLAN),
 - ► IP-subnets,
 - virtual devices and VPN.

Topology graph applications:

- network documentation;
- root cause analysis;
- network modeling and design;
- load study and visualization.

	_	

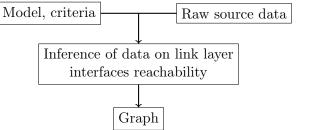
The problem of network topology graph building

Main troubles of link layer topology discovery:

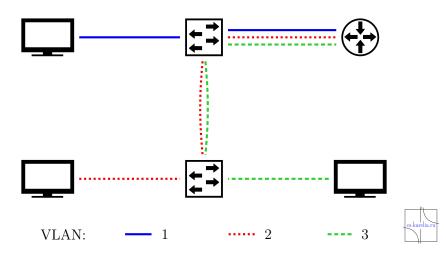
- IEEE 802.1 standards originally don't provide the ability of network elements discovery;
- recently standardized tools of network topology discovery (LLDP) are still not common enough and can not provide all necessary information (VLAN, connections blocked by STP);
- data heterogeneity and incompleteness;
- network topology volatility;
- complexity of modern networks (VLAN, VPN, virtualization).

Related works

Limitations of existing methods:


- only link layer topology is considered;
- some methods are incapable of working in networks that include IEEE 802.1Q VLAN, others does not consider important aspects of VLAN structure (eg. commutation, default VLAN);
- use particular single data source;
- most algorithms require AFT completeness close to 100% and a small number of inaccessible devices.

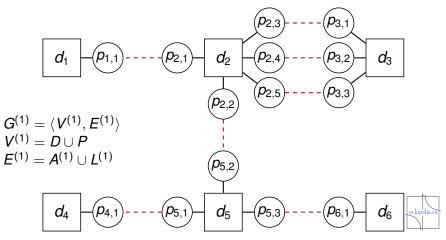
Widespread data sources:


- LLDP, CDP physical connections with direct neighbors only that have an IP address;
- STP link layer connections with neighbor switches;
- ARP reachability of layer 3 interfaces in the same subnet;
- AFT reachability of layer 2 interfaces in the same broadcast domain;

Our method

- subject of the study are midsize enterprises (containing up to a 1000 of devices and up to 10000 of network computers) that provide services to their own employees and to a limited number of smaller enterprises;
- physical, link and network layers are considered together;
- all widespread data sources are used;
- an algorithm based on the formal model;
- incomplete data inference and structure element detection basing on formal criteria.

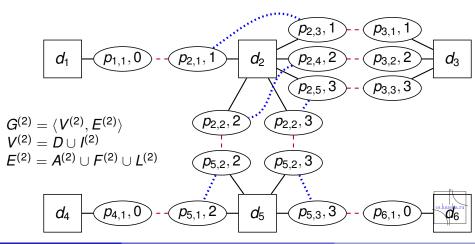
The layout of the sample network



Model of the physical layer

 D_{-} set of devices; P_{-} set of network ports;

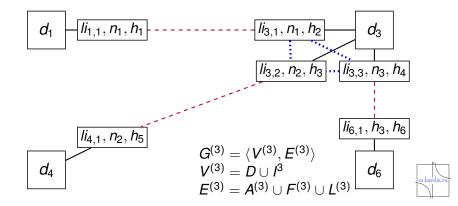
 $A^{(1)}$ – set of edges of association of ports with devices;


 $L^{(1)}$ — set of physical layer connection edges;

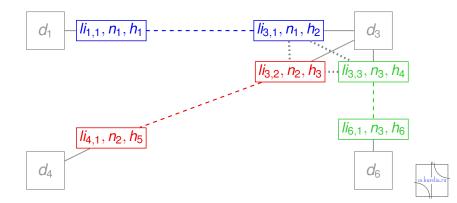
Model of the link layer

 $I^{(2)}$ — set of link layer interfaces;

 $A^{(2)}$, $F^{(2)}$, $L^{(2)}$ — edges of link layer association, commutation and connection;

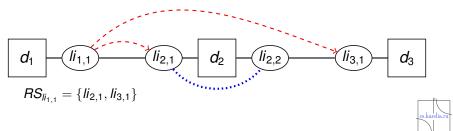

Model of the broadcast domains

Connected components of the graph $\widehat{G}^{(2)} = \langle I^{(2)}, L^{(2)} \cup F^{(2)} \rangle$

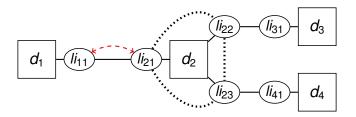

Model of the network layer

 $l^{(3)}$ — set of network layer interfaces; $A^{(3)}, \ F^{(3)}, \ L^{(3)}$ — edges of network layer association, routing and connection;

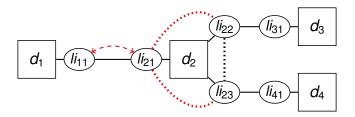
Model of the IP-subnets


Connected components of the graph $\widehat{G}^{(3)}=\langle I^{(3)},L^{(3)}\rangle$

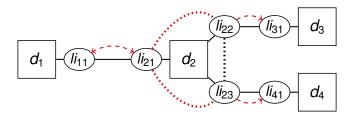
Reachability sets of link layer interfaces


Definition of reachability sets for a link layer interface:

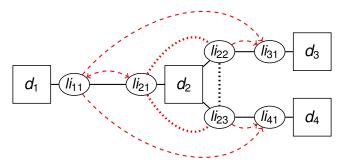
- Link layer interface li_2 is reachable from interface li_1 , if there is a link layer path between them for which the first and the last edges are not commutation edges.
- $RS_{li_1} \subseteq I^{(2)}$, all the interfaces which are reachable from li_1 .


Are necessary for generalized processing of heterogeneous data sources.

If an interface *li*₂ is reachable from *li*₁, then *li*₁ is reachable from *li*₂
If an interface *li*₂ is reachable from *li*₁, then from *li*₁ are reachable all interfaces, which are reachable from interfaces in commutation with *li*₂


Data inference is based on these properties of reachability sets proven by us within theorems.

If an interface *li*₂ is reachable from *li*₁, then *li*₁ is reachable from *li*₂
If an interface *li*₂ is reachable from *li*₁, then from *li*₁ are reachable all interfaces, which are reachable from interfaces in commutation with *li*₂


Data inference is based on these properties of reachability sets $\operatorname{proven}_{\underline{\mathsf{n}}}$ by us within theorems.

If an interface *li*₂ is reachable from *li*₁, then *li*₁ is reachable from *li*₂
If an interface *li*₂ is reachable from *li*₁, then from *li*₁ are reachable all interfaces, which are reachable from interfaces in commutation with *li*₂

Data inference is based on these properties of reachability sets proven by us within theorems.

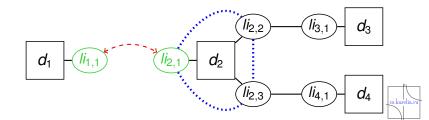
If an interface *li*₂ is reachable from *li*₁, then *li*₁ is reachable from *li*₂
If an interface *li*₂ is reachable from *li*₁, then from *li*₁ are reachable all interfaces, which are reachable from interfaces in commutation with *li*₂

Data inference is based on these properties of reachability sets proven by us within theorems.

The source data used by algorithm

Data are obtained with SNMP (Simple Network Management Protocol)

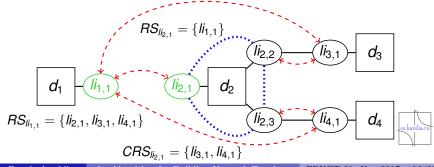
- Data on devices, their interfaces and addresses: IF-MIB, IP-MIB
- Data on VLAN: Q-BRIDGE-MIB, VTP-MIB, CISCO-VLAN-MEMBERSHIP-MIB, etc.
- Data on device environment: spanning tree (BRIDGE-MIB), neighbor data (CISCO-CDP-MIB, LLDP-MIB)
- Data on interface reachability: address forwarding tables AFT (BRIDGE-MIB), routing tables (IP-MIB, RIPv2-MIB, BGP4-MIB, etc.), ARP cache (RFC1213-MIB, IP-MIB)


The algorithm of the network topology graph building

- Polling of network devices and obtaining from them data on the structure of the network using SNMP;
- **2** Building graph fragments that describe the devices (with their ports and interfaces), existence of which follows directly from the results of the input data analysis;
- **B** Building reachability sets for existing link interfaces using the input dataset and inferring missing records in them using reachability set properties;
- 4 Graph edge building using formal criteria
 - link layer connection and commutation edges based on the analysis of the reachability sets;
 - physical and network layer connection edges based on the definitions of the model;
 - ▶ inference of the devices, data about which are missing from the starting retwork input data.

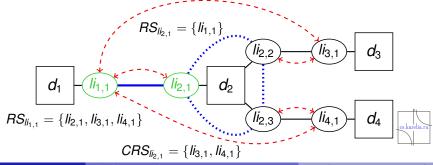
Link layer connections discovery Definition $CRS_{li} \subset I^{(2)}$ — set of link layer interfaces that are reachable from interfaces in commutation with li

Criterion


Interfaces $li_1 \bowtie li_2$ are connected on link layer if and only if $RS_{li_1} = CRS_{li_2} \cup \{li_2\}$ and $RS_{li_2} = CRS_{li_1} \cup \{li_1\}$.

Link layer connections discovery Definition $CRS_{li} \subset I^{(2)}$ — set of link layer interfaces that are reachable from interfaces in commutation with li

Criterion


Interfaces $li_1 \bowtie li_2$ are connected on link layer if and only if $RS_{li_1} = CRS_{li_2} \cup \{li_2\}$ and $RS_{li_2} = CRS_{li_1} \cup \{li_1\}$.

Link layer connections discovery Definition $CRS_{li} \subset I^{(2)}$ — set of link layer interfaces that are reachable from interfaces in commutation with li

Criterion

Interfaces $li_1 \bowtie li_2$ are connected on link layer if and only if $RS_{li_1} = CRS_{li_2} \cup \{li_2\}$ and $RS_{li_2} = CRS_{li_1} \cup \{li_1\}$.

Mathematically proven criteria

The criteria for detection of edges and vertices of the graph indirectly presented in the source data.

- Three criteria for the detection of link layer connection edges $(\mathcal{L}^{(2)})$
- Criterion for the detection of physical layer connection edges $(\mathcal{L}^{(1)})$
- Criterion for the detection of network layer connection edges $(\mathcal{L}^{(3)})$
- Criterion for the detection of link layer commutation edges $(F^{(2)})$
- Two criteria for the detection of ambiguous situations with border devices
- Two criteria for the detection of edges within VPN
- Three criteria for the detection of ambiguous situations with internal devices

Algorithm structure and procedures

- Procedure *COLLECT* to collect data and put result to *CData*
- Procedure BUILD_VERTICES to build graph vertices using CData
- Procedure *INIT_RS* to initialize reachability sets using *CData*

REPEAT

- \blacktriangleright Procedure $I\!NFER_RS$ for data inference
- ▶ Procedure *BUILD_LINK_LINKS* for link layer edge building
- ▶ Procedure *BUILD_PHYS_LINKS* for physical layer edge building
- WHILE some edge is found
- Procedure **BUILD_NET_LINKS** for network layer edge building

Time complexity

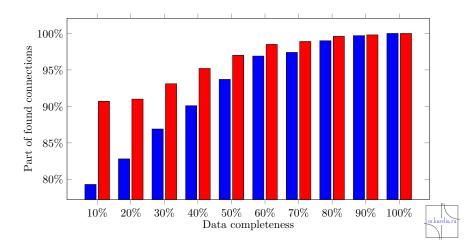
Worst-case asymptotic complexity $O(|P| * |I^{(2)}|^8)$

Best-case asymptotic complexity $\Omega(|I^{(2)}|^4)$

······································						
Number of	Number of	Number of	Execution			
communication	hosts	VLANs	time, sec.			
devices						
6	87	2	7			
20	400	10	125			
49	896	101	814			

Sample execution time (data collection time excluded)

System: Windows 10, 8-thread Intel Core i7, Oracle JDK 8-144


Testing in the network of PetrSU

Number of discovered elements, without and with use of data inference

	CI	ЭР	SI	ГP	A	FT	A	All
Devices	907	907	907	907	907	915	907	945
Ports	1151	1151	1151	1151	1151	1814	1151	1923
L1 links	63	63	15	15	1	796	63	832
L2	3452	3452	3452	3452	3452	4337	3512	4483
interfaces								
L2 links	612	612	560	560	101	1399	672	1570
Comm-s	8229	8229	8229	8229	8229	14071	8229	14738
L3	962							
interfaces								
L3 links	767	767	103	103	1	9061	672	9679
Routings	3717					cs.karelia		

Data presence influence

Blue — part of found connections between communication devices. Red — part of found connections between all devices.

Conclusion

- a formal method of discovering physical, link and network layers topology of an enterprise network is proposed;
- developed and proved 14 criteria for network elements discovery;
- developed, evaluated and tested the algorithm for automated network topology graph building.

Future work:

- parallel version of the algorithm;
- better testing and evaluation of the actual time complexity and performance when building the topology of real life networks;
- the experimental study of algorithm behavior on various networks.

Thank you for your attention!

ybgv@cs.petrsu.ru andreev@cs.petrsu.ru

t(
cs.karelia.ru	
	cs.karėlia.ru